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Quantum Hamiltonian Complexity 
Cubitt & Montanaro, arxiv:1311.3161 

P

NP

QMA

TIM

Quantum annealing with >100 qubits
Boixo et al, Nature Phys. 10, 218 (2014)

Motivation

Basic model of phase transitions
Onsager (1944)

Attempts to solve hard optimization 
problems such as QUBO

Understand computational 
hardness of estimating the
ground state energy for 
quantum spin Hamiltonians



Transverse Ising Model  (TIM)

𝐻 = 

𝑢

𝑔𝑢 𝑍𝑢 + ℎ𝑢 𝑋𝑢 −  

(𝑢,𝑣)

𝐽𝑢,𝑣 𝑍𝑢𝑍𝑣

• Qubits live at vertices of a graph

• Ising 𝑍𝑍 interactions between
nearest neighbor qubits.

• Local magnetic fields along 

𝑋 and 𝑍 axes. 

𝑍𝑢 =
1 0
0 −1

𝑋𝑢 =
0 1
1 0



Part I 
Universality of TIM for quantum annealing

Part II 
Computational hardness of estimating the 

ground state energy of TIM

Part III 
Ferromagnetic TIM is easy



Quantum Annealing   (Farhi et al 2001)

Easy Hard

𝑖
𝜕|  Ψ(𝑡)

𝜕𝑡
= 𝐻(𝑡/𝑇)|  Ψ(𝑡)

Unitary evolution

0 ≤ 𝑡 ≤ 𝑇

Easy: 𝐻 0 = − 𝑢 𝑋𝑢

Hard: 𝐻 1 =  (𝑢,𝑣) 𝐽𝑢,𝑣 𝑍𝑢𝑍𝑣 +  𝑢 𝑔𝑢𝑍𝑢

𝐻(𝑠) interpolates between 𝐻 0 and 𝐻(1)



Adiabatic Theorem

Here 𝛿 is the minimum spectral gap above the ground
state of 𝐻 𝑠 , 0 ≤ 𝑠 ≤ 1.

𝑇~
∥  𝐻 ∥

𝛿2
+

∥  𝐻 ∥2

𝛿3
+
∥  𝐻 ∥

𝛿2

Given an adiabatic path 𝐻 𝑠 , 0 ≤ 𝑠 ≤ 1, how large the 
evolution time 𝑇 should be ?

We need a smooth path with a non-negligible spectral gap

Jansen, Seiler, Ruskai,  JMP 48, 102111 (2007)



Big open question: what kind of problems can be 
efficiently solved by the quantum annealing (QA)  ?
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Big open question: what kind of problems can be 
efficiently solved by the quantum annealing (QA)  ?

𝑀′ 𝑀

Simpler question: can one QA machine efficiently
simulate another QA machine ?

TIM Hamiltonians Some fixed target class
of Hamiltonians

target QA machinesimulator QA machine



Target Simulator

Adiabatic path 𝐻 𝑠 , 0 ≤ 𝑠 ≤ 1 𝐻′ 𝑠 , 0 ≤ 𝑠 ≤ 1

Number of  qubits 𝑛 𝑛′ ≤ 𝑝𝑜𝑙𝑦(𝑛)

Minimum spectral gap 𝛿 𝛿′ ≥ 𝛿

Maximum 
interaction strength

𝐽 𝐽′ ≤ 𝑝𝑜𝑙𝑦(𝑛, 𝛿−1, 𝐽)

Ground state at 𝑠 = 0 All spins |  + All spins  |  +

Ground state at 𝑠 = 1
|  𝜓 ≈ 𝑉|  𝜓

What does efficient simulation mean ?

Here 𝑉: 𝐂2 ⨂𝑛 → 𝐂2 ⨂𝑛′ is a sufficiently simple encoding



𝑀′

TIM Hamiltonians 2-local Hamiltonians

target QA machinesimulator QA machine

𝑀

When efficient simulation is unlikely:



𝑀′

TIM Hamiltonians 2-local Hamiltonians

target QA machinesimulator QA machine

𝑀

When efficient simulation is unlikely:

BQP

Aharonov et al (2007)
Oliveira and Terhal (2008)



𝑀′

TIM Hamiltonians 2-local Hamiltonians

target QA machinesimulator QA machine

𝑀

When efficient simulation is unlikely:

BQPBQP⋂postBPP

Aharonov et al (2007)
Oliveira and Terhal (2008)

SB, DiVincenzo, Oliveira,
Terhal (2007)



𝑀′

TIM Hamiltonians 2-local Hamiltonians

target QA machinesimulator QA machine

𝑀

When efficient simulation is unlikely:

BQPBQP⋂postBPP

Aharonov et al (2007)
Oliveira and Terhal (2008)

≠

SB, DiVincenzo, Oliveira,
Terhal (2007)

More
Powerful



Stoquastic k-local Hamiltonians

𝐻 = 
𝛼
𝐻𝛼

𝑥|𝐻𝛼|𝑦 ≤ 0 for all 𝑥 ≠ 𝑦 ∈ 0,1 𝑘

System of 𝑛 qubits with a Hamiltonian  

1. Matrix elements of 𝐻𝛼 in the standard basis are real.

2. Off-diagonal matrix elements of 𝐻𝛼 are non-positive:

Each term 𝐻𝛼 acts on at most 𝑘 = 𝑂(1) qubits



Building blocks for 2-local stoquastic Hamiltonians:

±𝑍𝑢, ±𝑍𝑢𝑍𝑣Diagonal :

Elementary
interactions:

−𝑋⊗  0  0 , −𝑋 ⊗  1 1

Transverse field:          −𝑋𝑢

− 𝑋⊗ 𝑋 − 𝑌⊗ 𝑌, −𝑋 ⊗ 𝑋 + 𝑌 ⊗ 𝑌



Result 1: universality of TIM for quantum 
annealing with 2-local stoquastic Hamiltonians 
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Result 1: universality of TIM for quantum 
annealing with 2-local stoquastic Hamiltonians 

𝑀′

TIM Hamiltonians Stoquastic
2-local Hamiltonians

target QA machinesimulator QA machine

𝑀=

with k-local diagonal
terms

on degree-3 graphs



Part II 
Computational hardness of estimating the 

ground state energy of TIM



Local Hamiltonian Problem (LHP): 

Input: (𝑛, 𝐻 =  𝛼𝐻𝛼 , 𝐶𝑦𝑒𝑠 < 𝐶𝑛𝑜)

𝐸0 = min 𝜓 𝐻 𝜓

Yes-instance: 𝐸0 ≤ 𝐶𝑦𝑒𝑠

No-instance: 𝐸0 ≥ 𝐶𝑛𝑜

Promise: 𝐸0 ∉ 𝐶𝑦𝑒𝑠 , 𝐶𝑛𝑜

Normalization: 𝐻𝛼 ≤ 𝑝𝑜𝑙𝑦 𝑛 , 𝐶𝑛𝑜 − 𝐶𝑦𝑒𝑠 ≥ 𝑝𝑜𝑙𝑦 1/𝑛

#terms ≤ 𝑝𝑜𝑙𝑦(𝑛)

Decide which one is the case. 

Ground state energy:



Merlin-Arthur games (Babai 1985)

Merlin

Unlimited 
computational power

Arthur

Polynomial-time
classical computer

I instance of yes/no problem

P
proof

accept reject



NP
yes-instance: Arthur accepts some Merlin’s proof

no-instance: Arthur rejects any Merlin’s proof

A problem belongs to this class if …complexity class



NP

QMA

yes-instance: Arthur accepts some Merlin’s proof

no-instance: Arthur rejects any Merlin’s proof

yes-instance: Arthur accepts some Merlin’s proof
with high probability

no-instance: Arthur rejects any Merlin’s proof
with high probability

Arthur is a quantum computer. Merlin’s proof can be
a quantum state.

A problem belongs to this class if …complexity class



NP

QMA

yes-instance: Arthur accepts some Merlin’s proof

no-instance: Arthur rejects any Merlin’s proof

yes-instance: Arthur accepts some Merlin’s proof
with high probability

no-instance: Arthur rejects any Merlin’s proof
with high probability

Arthur is a quantum computer. Merlin’s proof can be
a quantum state.

A problem belongs to this class if …complexity class

StoqMA
Same as QMA but Arthur can apply only reversible
classical gates (CNOT, TOFFOLI) and measure some
fixed output qubit in the X-basis. 
Arthur accepts the proof if the measurement 

outcome is ‘+′. Arthur can use |  0 and |  + ancillas.

SB, Bessen, Terhal, arXiv:0611021



P

NP

QMA

StoqMA

PostBPP

MA

AM A0PP

SBP

Π2

- randomized analogue of MA NP

AM=MA + shared randomness

SBP
approximate counting classes 

A0PP
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Computing the  minimum energy of the classical Ising model is 

NP-complete, even for the 2D geometry (with magnetic field)
Barahona (1982)

Local Hamiltonian Problem for general 𝑘-local Hamiltonians is 

QMA-complete for any constant 𝑘 ≥ 2
Kitaev, Kempe, Regev (2006); 

QMA-complete for the 2D geometry Oliveira and Terhal (2008)

Local Hamiltonian Problem for 𝑘-local stoquastic Hamiltonians is

StoqMA-complete for any constant 𝑘 ≥ 2
SB, DiVincenzo, Oliveira, Terhal (2007)



Result 2: Local Hamiltonian Problem for TIM
on degree-3 graphs is  StoqMA-complete.

Computing the  minimum energy of the classical Ising model is 

NP-complete, even for the 2D geometry (with magnetic field)
Barahona (1982)

Local Hamiltonian Problem for general 𝑘-local Hamiltonians is 

QMA-complete for any constant 𝑘 ≥ 2
Kitaev, Kempe, Regev (2006); 

QMA-complete for the 2D geometry Oliveira and Terhal (2008)

Local Hamiltonian Problem for 𝑘-local stoquastic Hamiltonians is

StoqMA-complete for any constant 𝑘 ≥ 2
SB, DiVincenzo, Oliveira, Terhal (2007)



Implications for  Cubitt-Montanaro complexity
classification of 2-local Hamiltonians (arxiv:1311.3161): 

𝑆-LHP: special case of the 2-Local Hamiltonian Problem.
All terms in the Hamiltonian must belong to some fixed 
set 𝑆 (with arbitrary real coefficients). 

Example:   𝑆 = { 𝑍⨂𝑍, 𝑍⨂𝐼, 𝑋⨂𝐼} describes TIM-LHP



Implications for  Cubitt-Montanaro complexity
classification of 2-local Hamiltonians (arxiv:1311.3161): 

𝑆-LHP: special case of the 2-Local Hamiltonian Problem.
All terms in the Hamiltonian must belong to some fixed 
set 𝑆 (with arbitrary real coefficients). 

Example:   𝑆 = { 𝑍⨂𝑍, 𝑍⨂𝐼, 𝑋⨂𝐼} describes TIM-LHP

P

NP

QMA

TIM

𝑆-LHP

contained in P

NP-complete

QMA-complete

reducible to TIM-LHP

Cubitt-Montanaro (2013):



Example:   𝑆 = { 𝑍⨂𝑍, 𝑍⨂𝐼, 𝑋⨂𝐼} describes TIM-LHP

𝑆-LHP

contained in P

NP-complete

QMA-complete

StoqMA-complete

Improved Cubitt-Montanaro:

StoqMA

P

NP

QMA

StoqMA

Implications for  Cubitt-Montanaro complexity
classification of 2-local Hamiltonians (arxiv:1311.3161): 

𝑆-LHP: special case of the 2-Local Hamiltonian Problem.
All terms in the Hamiltonian must belong to some fixed 
set 𝑆 (with arbitrary real coefficients). 



Part III 
Ferromagnetic TIM

𝐻 = 

𝑢

𝑔 𝑍𝑢 + ℎ𝑢 𝑋𝑢 −  

(𝑢,𝑣)

𝐽𝑢,𝑣 𝑍𝑢𝑍𝑣

𝐽𝑢,𝑣 ≥ 0Uniform
Z-field



Classical ferromagnetic Ising model: known results

Uniform Z-field: trivial:   ↑ ↑ ↑ ↑ ↑ ↑ ↑ or ↓ ↓ ↓ ↓ ↓ ↓ ↓

Arbitrary Z-fields: 𝑂(𝑛3) algorithm (equivalent to Min Cut problem)

Computing the minimum energy:



Classical ferromagnetic Ising model: known results

Uniform Z-field: trivial:   ↑ ↑ ↑ ↑ ↑ ↑ ↑ or ↓ ↓ ↓ ↓ ↓ ↓ ↓

Arbitrary Z-fields: 𝑂(𝑛3) algorithm (equivalent to Min Cut problem)

Computing the minimum energy:

Computing the partition function Tr 𝑒−𝐻 :

Exact computation is #𝑃-hard, Jerrum & Sinclair (1993)

Uniform Z-field: 𝑂(𝑛17𝛿−2) approximation algorithm 
Jerrum & Sinclair (1993) 

Arbitrary Z-fields: approximation is #𝐵𝐼𝑆-hard.  Unlikely to have 
poly-time algorithm, Goldberg & Jerrum (2005) 



𝑍 = Tr 𝑒−𝐻

Result 3: Polynomial-time approximation algorithm for

the partition function of the ferromagnetic TIM. 



𝑍 = Tr 𝑒−𝐻

Classical randomized
algorithm

𝐽𝑢,𝑣

𝑔, ℎ𝑢

𝛿

 𝑍

1 − 𝛿 𝑍 ≤  𝑍 ≤ 1 + 𝛿 𝑍

𝑂 𝑛59𝐽21𝛿−9
running time

𝐽 = max 𝐽𝑢,𝑣 , |ℎ𝑢|, |𝑔|𝑛 = number of spins

w.h.p.

Result 3: Polynomial-time approximation algorithm for

the partition function of the ferromagnetic TIM. 



𝑍 = Tr 𝑒−𝐻/𝑇

1. The free energy  𝐹 𝑇 = −𝑇log 𝑍 can be estimated with an 

additive error 𝛿 in time 𝑝𝑜𝑙𝑦(𝑛, 𝛿−1, 𝐽𝑇−1)

Result 3: Polynomial-time approximation algorithm for

the partition function of the ferromagnetic TIM. 

Implications:



𝑍 = Tr 𝑒−𝐻/𝑇

1. The free energy  𝐹 𝑇 = −𝑇log 𝑍 can be estimated with an 

additive error 𝛿 in time 𝑝𝑜𝑙𝑦(𝑛, 𝛿−1, 𝐽𝑇−1)

2. The ground state energy 𝐸0 can be estimated with an 

additive error 𝛿 in time 𝑝𝑜𝑙𝑦(𝑛, 𝛿−1, 𝐽)

Result 3: Polynomial-time approximation algorithm for

the partition function of the ferromagnetic TIM. 

Implications:



Sketch of the proofs



Ferromagnetic TIM is easy

𝐻 = −𝐴 − 𝐵 𝐴 = classical ferromag. 
Ising model

𝐵 = transverse field

𝑍 = Tr 𝑒𝐴+𝐵
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Ferromagnetic TIM is easy

𝑍′ = Tr 𝑒𝐴/𝑟𝑒𝐵/𝑟
𝑟

𝑟 = 𝑝𝑜𝑙𝑦(𝑛)

Fact 1:  𝑍′ approximates 𝑍 with a multiplicative error 𝑂(𝛿) if

𝐻 = −𝐴 − 𝐵 𝐴 = classical ferromag. 
Ising model

𝐵 = transverse field

𝑍 = Tr 𝑒𝐴+𝐵

Trotter-Suzuki approximation to 𝑍

Fact 2: (Quantum-to-Classical mapping) 𝑍′ coincides with the partition

function of a classical ferromagnetic Ising model with 𝑛′ = 𝑛𝑟 spins.  

Fact 3:  [Jerrum & Sinclair 1993]
The partition function of the classical ferromagnetic Ising model 

can be approximated in time 𝑂 𝑛17𝛿−2 by a Monte Carlo algorithm.

𝑟 ≥ 𝛿−1/2 𝐴 3/2 + 𝐵 3/2



Sketch of the proofs

(part I and II)



perturbative reductions  Kitaev, Kempe, Regev (2004) 

𝐻′ = 𝐻0 + 𝑉 𝐻

target Hamiltoniansimulator Hamiltonian

𝐻 ≈ 𝐻eff =
𝑉−− − ∆−1 𝑉−+ 𝑉+− +⋯

effective low-energy
Hamiltonian

𝐸0

𝐸0 + Δ

𝑉−+𝑉+−

degenerate
ground subspace of 𝐻0

𝑉−−



TIM on degree-3 graphs
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target
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simulator

General TIM

TIM on degree-3 graphs

Hard-core dimers

Hard-core bosons (range-2)

Hard-core bosons (range-1)

Hard-core bosons w. controlled hopping

Stoquastic 2-local Hamiltonians

energy

target

Perturbative  reductions



Hard-core dimers model (HCD)

• System of 𝑘 particles on a fixed graph with 𝑛 nodes.
• Each site can be either empty or occupied  by a particle
• Admissible configurations are nearest-neighbor pairs - dimers

• Dimers must be separated by a fixed distance 𝑟 – the range

1 2 3 4 5 6 7 8 9

range-2 HCD



Hard-core dimers model (HCD)

𝐻 = −𝑡 

𝑢,𝑣

𝑊𝑢,𝑣 +  

𝑢

𝜇𝑢𝑁𝑢 +  

𝑢,𝑣

𝐽𝑢,𝑣𝑁𝑢𝑁𝑣

long-range
hopping

on-site chemical
potential

two-particle
interaction

1 2 3 4 5 6 7 8 9

range-2 HCD

• System of 𝑘 particles on a fixed graph with 𝑛 nodes.
• Each site can be either empty or occupied  by a particle
• Admissible configurations are nearest-neighbor pairs - dimers

• Dimers must be separated by a fixed distance 𝑟 – the range

𝑁3 = 0𝑁1 = 1



Dimers can only move locally:

𝐻 = −𝑡 

𝑢,𝑣

𝑊𝑢,𝑣 +  

𝑢

𝜇𝑢𝑁𝑢 +  

𝑢,𝑣

𝐽𝑢,𝑣𝑁𝑢𝑁𝑣

long-range
hopping

on-site chemical
potential

two-particle
interaction

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

𝑊4,6Allowed hopping: range-2 HCD



𝐻 = −𝑡 

𝑢,𝑣

𝑊𝑢,𝑣 +  

𝑢

𝜇𝑢𝑁𝑢 +  

𝑢,𝑣

𝐽𝑢,𝑣𝑁𝑢𝑁𝑣

long-range
hopping

on-site chemical
potential

two-particle
interaction

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

range-2 HCD
Forbidden hopping: 𝑊3,6

Dimers can only move locally:



𝐻 = −𝑡 

𝑢,𝑣

𝑊𝑢,𝑣 +  

𝑢

𝜇𝑢𝑁𝑢 +  

𝑢,𝑣

𝐽𝑢,𝑣𝑁𝑢𝑁𝑣

long-range
hopping

on-site chemical
potential

two-particle
interaction

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

range-2 HCDForbidden hopping: 𝑊5,7

Dimers cannot come too close to each other:



How the reductions work: overview 

General TIM

TIM on degree-3 graphs

Hard-core dimers (range-3)

Hard-core bosons (range-2)

Hard-core bosons (range-1)

Hard-core bosons w. controlled hopping

Stoquastic 2-local Hamiltonians

energy



TIM on degree-3 graphs

5

1

23

4

Encode each spin into the

ground subspace of 1D  TIM.

Now each spin is coupled
to at most 3 other spins.

General TIM

1

2

3

4

5

1 2 3 4



General TIMHard-core dimers (range-3)



General TIMHard-core dimers (range-3)

Ising Hamiltonian whose ground states are range-3 dimers:

𝐻0 = 

𝑢

𝑁𝑢 − 2  

𝐷 𝑢,𝑣 =1

𝑁𝑢𝑁𝑣 + Γ  

𝐷 𝑢,𝑣 =2

𝑁𝑢𝑁𝑣

Γ = 𝑝𝑜𝑙𝑦(𝑛)𝑁𝑢 = (𝐼 + 𝑍𝑢)/2

𝐷(𝑢, 𝑣) – graph distance between sites 𝑢, 𝑣



General TIMHard-core dimers (range-3)

Hopping

𝑉+−

𝑉−+

𝑉 = ℎ 

𝑢

𝑋𝑢

The intermediate state created by 𝑉
“remembers” the dimer location.
This is why local hopping can emerge 
from the global transverse field
and this is why we need dimers.



Open problems:

Universality of TIM for quantum  annealing with 𝑘-local 

stoquastic Hamiltonians for 𝑘 > 2

Is there a subclass of BQP that captures the power
of quantum annealing with stoquastic Hamiltonians ?

More efficient algorithms for the ferromagnetic TIM.
Can one compute the ground state energy directly
without computing the partition function ?

Amplification of the completeness and soundness errors
for the class StoqMA


