On complexity of the quantum Ising model

Sergey Bravyi (IBM) Matthew Hastings (Microsoft Research)

Presenter: David Gosset

Based on
arXiv: 1410.0703
arXiv: 1402.2295

QIP
Sydney
January 16, 2015

Motivation

Quantum annealing with >100 qubits Boixo et al, Nature Phys. 10, 218 (2014)

Attempts to solve hard optimization problems such as QUBO

Basic model of phase transitions Onsager (1944)

Quantum Hamiltonian Complexity Cubitt \& Montanaro, arxiv:1311.3161

Understand computational hardness of estimating the ground state energy for quantum spin Hamiltonians

Transverse Ising Model (TIM)

- Qubits live at vertices of a graph
- Ising ZZ interactions between nearest neighbor qubits.
- Local magnetic fields along X and Z axes.

$$
\begin{gathered}
H=\sum_{u} g_{u} Z_{u}+h_{u} X_{u}-\sum_{(u, v)} J_{u, v} Z_{u} Z_{v} \\
Z_{u}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad X_{u}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\end{gathered}
$$

Part I

Universality of TIM for quantum annealing

Part II

Computational hardness of estimating the ground state energy of TIM

Part III

Ferromagnetic TIM is easy

Quantum Annealing (Farhi et al 2001)

Easy: $\quad H(0)=-\sum_{u} X_{u}$
Hard: $\quad H(1)=\sum_{(u, v)} J_{u, v} Z_{u} Z_{v}+\sum_{u} g_{u} Z_{u}$
$H(s)$ interpolates between $H(0)$ and $H(1)$

Given an adiabatic path $H(s), 0 \leq s \leq 1$, how large the evolution time T should be?

Adiabatic Theorem

$$
T \sim \frac{\|\dot{H}\|}{\delta^{2}}+\frac{\|\dot{H}\|^{2}}{\delta^{3}}+\frac{\|\ddot{H}\|}{\delta^{2}}
$$

Here δ is the minimum spectral gap above the ground state of $H(s), 0 \leq s \leq 1$.

Jansen, Seiler, Ruskai, JMP 48, 102111 (2007)

We need a smooth path with a non-negligible spectral gap

Big open question: what kind of problems can be efficiently solved by the quantum annealing (QA) ?

Big open question: what kind of problems can be efficiently solved by the quantum annealing (QA)?

Simpler question: can one QA machine efficiently simulate another QA machine?
simulator QA machine

target QA machine

Big open question: what kind of problems can be efficiently solved by the quantum annealing (QA) ?

Simpler question: can one QA machine efficiently simulate another QA machine?
simulator QA machine

TIM Hamiltonians
target QA machine

Big open question: what kind of problems can be efficiently solved by the quantum annealing (QA) ?

Simpler question: can one QA machine efficiently simulate another QA machine?
simulator QA machine

TIM Hamiltonians
target QA machine

Some fixed target class of Hamiltonians

What does efficient simulation mean?

	Target	Simulator
Adiabatic path	$H(s), 0 \leq s \leq 1$	$H^{\prime}(s), 0 \leq s \leq 1$
Number of qubits	n	$n^{\prime} \leq \operatorname{poly}(n)$
Minimum spectral gap	δ	$\delta^{\prime} \geq \delta$
Maximum interaction strength	J	$J^{\prime} \leq \operatorname{poly}\left(n, \delta^{-1}, J\right)$
Ground state at $s=0$	All spins $\|+\rangle$	All spins $\|+\rangle$
Ground state at $s=1$	$\|\psi\rangle$	$\approx V\|\psi\rangle$

Here $V:\left(\mathbf{C}^{2}\right)^{\otimes n} \rightarrow\left(\mathbf{C}^{2}\right)^{\otimes n \prime}$ is a sufficiently simple encoding

When efficient simulation is unlikely:
simulator QA machine

TIM Hamiltonians
target QA machine

2-local Hamiltonians

When efficient simulation is unlikely:
simulator QA machine

TIM Hamiltonians
target QA machine

2-local Hamiltonians

Aharonov et al (2007)
Oliveira and Terhal (2008)

When efficient simulation is unlikely:
simulator QA machine

TIM Hamiltonians

ป
 BQP@postBPP

SB, DiVincenzo, Oliveira, Terhal (2007)
target QA machine

2-local Hamiltonians

Aharonov et al (2007)
Oliveira and Terhal (2008)

When efficient simulation is unlikely:
simulator QA machine

TIM Hamiltonians

ป
 BQP@postBPP

SB, DiVincenzo, Oliveira, Terhal (2007)
target QA machine

2-local Hamiltonians
$\neq \quad$ BQP

Aharonov et al (2007)
Oliveira and Terhal (2008)

Stoquastic k-local Hamiltonians

System of n qubits with a Hamiltonian

$$
H=\sum_{\alpha} H_{\alpha}
$$

Each term H_{α} acts on at most $k=O(1)$ qubits

1. Matrix elements of H_{α} in the standard basis are real.
2. Off-diagonal matrix elements of H_{α} are non-positive:

$$
\langle x| H_{\alpha}|y\rangle \leq 0 \text { for all } x \neq y \in\{0,1\}^{k}
$$

Building blocks for 2-local stoquastic Hamiltonians:

Diagonal :

$$
\pm Z_{u}, \quad \pm Z_{u} Z_{v}
$$

Transverse field: $\quad-X_{u}$

Elementary interactions:

$$
-X \otimes X-Y \otimes Y, \quad-X \otimes X+Y \otimes Y
$$

Result 1: universality of TIM for quantum annealing with 2-local stoquastic Hamiltonians

simulator QA machine

TIM Hamiltonians
target QA machine

Stoquastic
2-local Hamiltonians

Result 1: universality of TIM for quantum annealing with 2-local stoquastic Hamiltonians

simulator QA machine

TIM Hamiltonians
target QA machine

Stoquastic
2-local Hamiltonians with k -local diagonal terms

Result 1: universality of TIM for quantum annealing with 2-local stoquastic Hamiltonians

simulator QA machine

TIM Hamiltonians on degree-3 graphs
target QA machine

Stoquastic
2-local Hamiltonians with k -local diagonal terms

Part II

Computational hardness of estimating the ground state energy of TIM

Ground state energy: $\quad E_{0}=\min \langle\psi| H|\psi\rangle$

Local Hamiltonian Problem (LHP):

$$
\text { Input: }\left(n, H=\sum_{\alpha} H_{\alpha}, C_{y e s}<C_{n o}\right)
$$

Yes-instance: $E_{0} \leq C_{\text {yes }}$
No-instance: $E_{0} \geq C_{n o}$
Decide which one is the case.
Promise: $E_{0} \notin\left(C_{\text {yes }}, C_{n o}\right)$

Normalization: $\quad\left\|H_{\alpha}\right\| \leq \operatorname{poly}(n), \quad C_{n o}-C_{y e s} \geq \operatorname{poly}(1 / n)$ $\#$ terms $\leq \operatorname{poly}(n)$

Merlin-Arthur games (Babai 1985)

yes-instance: Arthur accepts some Merlin's proof no-instance: Arthur rejects any Merlin's proof

Arthur is a quantum computer. Merlin's proof can be a quantum state.
yes-instance: Arthur accepts some Merlin's proof with high probability
no-instance: Arthur rejects any Merlin's proof with high probability
yes-instance: Arthur accepts some Merlin's proof no-instance: Arthur rejects any Merlin's proof

Arthur is a quantum computer. Merlin's proof can be a quantum state.
yes-instance: Arthur accepts some Merlin's proof with high probability
no-instance: Arthur rejects any Merlin's proof with high probability

Same as QMA but Arthur can apply only reversible classical gates (CNOT, TOFFOLI) and measure some fixed output qubit in the X-basis.
Arthur accepts the proof if the measurement outcome is ' + '. Arthur can use $|0\rangle$ and $|+\rangle$ ancillas.

SB, Bessen, Terhal, arXiv:0611021

Computing the minimum energy of the classical Ising model is NP-complete, even for the 2D geometry (with magnetic field) Barahona (1982)

Computing the minimum energy of the classical Ising model is NP-complete, even for the 2D geometry (with magnetic field) Barahona (1982)

Local Hamiltonian Problem for general k-local Hamiltonians is QMA-complete for any constant $k \geq 2$
Kitaev, Kempe, Regev (2006);
QMA-complete for the 2D geometry Oliveira and Terhal (2008)

Computing the minimum energy of the classical Ising model is NP-complete, even for the 2D geometry (with magnetic field) Barahona (1982)

Local Hamiltonian Problem for general k-local Hamiltonians is QMA-complete for any constant $k \geq 2$ Kitaev, Kempe, Regev (2006);
QMA-complete for the 2D geometry Oliveira and Terhal (2008)
Local Hamiltonian Problem for k-local stoquastic Hamiltonians is StoqMA-complete for any constant $k \geq 2$ SB, DiVincenzo, Oliveira, Terhal (2007)

Computing the minimum energy of the classical Ising model is NP-complete, even for the 2D geometry (with magnetic field) Barahona (1982)

Local Hamiltonian Problem for general k-local Hamiltonians is QMA-complete for any constant $k \geq 2$ Kitaev, Kempe, Regev (2006);
QMA-complete for the 2D geometry Oliveira and Terhal (2008)
Local Hamiltonian Problem for k-local stoquastic Hamiltonians is StoqMA-complete for any constant $k \geq 2$ SB, DiVincenzo, Oliveira, Terhal (2007)

Result 2: Local Hamiltonian Problem for TIM

 on degree-3 graphs is StoqMA-complete.
Implications for Cubitt-Montanaro complexity classification of 2-local Hamiltonians (arxiv:1311.3161):

S-LHP: special case of the 2-Local Hamiltonian Problem. All terms in the Hamiltonian must belong to some fixed set S (with arbitrary real coefficients).

Example: $S=\{Z \otimes Z, Z \otimes I, X \otimes I\}$ describes TIM-LHP

Implications for Cubitt-Montanaro complexity classification of 2-local Hamiltonians (arxiv:1311.3161):

S-LHP: special case of the 2-Local Hamiltonian Problem. All terms in the Hamiltonian must belong to some fixed set S (with arbitrary real coefficients).

Example: $S=\{Z \otimes Z, Z \otimes I, X \otimes I\}$ describes TIM-LHP

Cubitt-Montanaro (2013):

$$
S \text {-LHP }<\begin{aligned}
& \text { NP-complete } \\
& \text { NMA-complete } \\
& \text { reducible to TIM-LHP }
\end{aligned}
$$

Implications for Cubitt-Montanaro complexity classification of 2-local Hamiltonians (arxiv:1311.3161):

S-LHP: special case of the 2-Local Hamiltonian Problem. All terms in the Hamiltonian must belong to some fixed set S (with arbitrary real coefficients).

Example: $S=\{Z \otimes Z, Z \otimes I, X \otimes I\}$ describes TIM-LHP

Improved Cubitt-Montanaro:

$$
S \text {-LHP } \ll \begin{aligned}
& \text { NP-complete } \\
& \text { QMA-complete } \\
& \text { StoqMA-complete }
\end{aligned}
$$

Part III

Ferromagnetic TIM

$$
\begin{gathered}
H=\sum_{u} g Z_{u}+h_{u} X_{u}-\sum_{(u, v)} J_{u, v} Z_{u} Z_{v} \\
\begin{array}{l}
\text { Uniform } \\
Z \text {-field }
\end{array} \quad J_{u, v} \geq 0
\end{gathered}
$$

Classical ferromagnetic Ising model: known results

Computing the minimum energy:
Uniform Z-field: trivial: $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$ or $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
Arbitrary Z-fields: $O\left(n^{3}\right)$ algorithm (equivalent to Min Cut problem)

Classical ferromagnetic Ising model: known results

Computing the minimum energy:

Uniform Z-field: trivial: $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$ or $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ Arbitrary Z-fields: $O\left(n^{3}\right)$ algorithm (equivalent to Min Cut problem)

Computing the partition function $\operatorname{Tr} e^{-H}$:
Exact computation is \#P-hard, Jerrum \& Sinclair (1993)
Uniform Z-field: $O\left(n^{17} \delta^{-2}\right)$ approximation algorithm
Jerrum \& Sinclair (1993)
Arbitrary Z-fields: approximation is \#BIS-hard. Unlikely to have poly-time algorithm, Goldberg \& Jerrum (2005)

Result 3: Polynomial-time approximation algorithm for the partition function of the ferromagnetic TIM.

$$
Z=\operatorname{Tr} e^{-H}
$$

Result 3: Polynomial-time approximation algorithm for the partition function of the ferromagnetic TIM.

$$
Z=\operatorname{Tr} e^{-H}
$$

$$
(1-\delta) Z \leq \tilde{Z} \leq(1+\delta) Z \quad \text { w.h.p. }
$$

$n=$ number of spins

$$
J=\max \left(J_{u, v},\left|h_{u}\right|,|g|\right)
$$

Result 3: Polynomial-time approximation algorithm for the partition function of the ferromagnetic TIM.

$$
Z=\operatorname{Tr} e^{-H / T}
$$

Implications:

1. The free energy $F(T)=-T \log (Z)$ can be estimated with an additive error δ in time $\operatorname{poly}\left(n, \delta^{-1}, J T^{-1}\right)$

Result 3: Polynomial-time approximation algorithm for the partition function of the ferromagnetic TIM.

$$
Z=\operatorname{Tr} e^{-H / T}
$$

Implications:

1. The free energy $F(T)=-T \log (Z)$ can be estimated with an additive error δ in time poly $\left(n, \delta^{-1}, J T^{-1}\right)$
2. The ground state energy E_{0} can be estimated with an additive error δ in time poly $\left(n, \delta^{-1}, J\right)$

Sketch of the proofs

Ferromagnetic TIM is easy

$$
H=-A-B \quad \begin{gathered}
A=\begin{array}{c}
\text { c classical ferromag. } \\
\text { Ising model }
\end{array}
\end{gathered} B=\text { transverse field }
$$

$$
Z=\operatorname{Tr} e^{A+B}
$$

Ferromagnetic TIM is easy

$$
H=-A-B \quad \begin{gathered}
A=\begin{array}{c}
\text { c classical ferromag. } \\
\text { Ising model }
\end{array}
\end{gathered} B=\text { transverse field }
$$

$$
Z=\operatorname{Tr} e^{A+B}
$$

$$
Z^{\prime}=\operatorname{Tr}\left(e^{A / r} e^{B / r}\right)^{r}
$$

$$
r=\operatorname{poly}(n)
$$

Trotter-Suzuki approximation to Z

Ferromagnetic TIM is easy

$$
\begin{array}{cc}
H=-A-B & \begin{array}{c}
A=\begin{array}{c}
\text { classical ferromag. } \\
\text { Ising model }
\end{array} \\
Z=\operatorname{Tr} e^{A+B}
\end{array} \underbrace{Z^{\prime}=\operatorname{Tr}\left(e^{A / r} e^{B / r}\right)^{r}}_{\text {Trotter-Suzuki approximation to } Z} r=\operatorname{transverse~field~}
\end{array}
$$

Fact 1: Z^{\prime} approximates Z with a multiplicative error $O(\delta)$ if

$$
r \geq \delta^{-1 / 2}\left(\|A\|^{3 / 2}+\|B\|^{3 / 2}\right)
$$

Ferromagnetic TIM is easy

$$
H=-A-B \quad \begin{gathered}
A=\begin{array}{c}
\text { classical ferromag. } \\
\text { Ising model }
\end{array}
\end{gathered} B=\text { transverse field }
$$

$$
Z=\operatorname{Tr} e^{A+B} \quad \underbrace{Z^{\prime}=\operatorname{Tr}\left(e^{A / r} e^{B / r}\right)^{r}}_{\text {Trotter-Suzuki approximation to } Z} r
$$

$$
r=\operatorname{poly}(n)
$$

Fact 1: Z^{\prime} approximates Z with a multiplicative error $O(\delta)$ if

$$
r \geq \delta^{-1 / 2}\left(\|A\|^{3 / 2}+\|B\|^{3 / 2}\right)
$$

Fact 2: (Quantum-to-Classical mapping) Z^{\prime} coincides with the partition function of a classical ferromagnetic Ising model with $n^{\prime}=n r$ spins.

Ferromagnetic TIM is easy

$$
H=-A-B \quad \begin{gathered}
A=\begin{array}{c}
\text { classical ferromag. } \\
\text { Ising model }
\end{array}
\end{gathered} B=\text { transverse field }
$$

$$
Z=\operatorname{Tr} e^{A+B} \quad \underbrace{Z^{\prime}=\operatorname{Tr}\left(e^{A / r} e^{B / r}\right)^{r}}_{\text {Trotter-Suzuki approximation to } Z} r
$$

$$
r=\operatorname{poly}(n)
$$

Fact 1: Z^{\prime} approximates Z with a multiplicative error $O(\delta)$ if

$$
r \geq \delta^{-1 / 2}\left(\|A\|^{3 / 2}+\|B\|^{3 / 2}\right)
$$

Fact 2: (Quantum-to-Classical mapping) Z^{\prime} coincides with the partition function of a classical ferromagnetic Ising model with $n^{\prime}=n r$ spins.

Fact 3: [Jerrum \& Sinclair 1993]
The partition function of the classical ferromagnetic Ising model can be approximated in time $O\left(n^{17} \delta^{-2}\right)$ by a Monte Carlo algorithm.

Sketch of the proofs

(part I and II)

perturbative reductions Kitaev, Kempe, Regev (2004)
simulator Hamiltonian

ground subspace of H_{0}
target Hamiltonian

$$
\begin{gathered}
H \approx H_{\text {eff }}= \\
V_{--}-\Delta^{-1} V_{-+} V_{+-}+\cdots
\end{gathered}
$$

effective low-energy Hamiltonian

Perturbative reductions

energy
TIM on degree- 3 graphs
simulator

Stoquastic 2-local Hamiltonians target

Perturbative reductions

energy
TIM on degree- 3 graphs
simulator
General TIM
Hard-core dimers
Hard-core bosons (range-2)
Hard-core bosons (range-1)
Hard-core bosons w. controlled hopping
Stoquastic 2-local Hamiltonians
target

Perturbative reductions

energy
TIM on degree- 3 graphs
General TIM
Hard-core dimers
Hard-core bosons (range-2)
Hard-core bosons (range-1)
Hard-core bosons w. controlled hopping
Stoquastic 2-local Hamiltonians

Perturbative reductions

energy
TIM on degree-3 graphs
General TIM
Hard-core dimers
simulator
target
Hard-core bosons (range-2)
Hard-core bosons (range-1)
Hard-core bosons w. controlled hopping
Stoquastic 2-local Hamiltonians

Perturbative reductions

energy
TIM on degree-3 graphs
General TIM
Hard-core dimers
simulator
Hard-core bosons (range-2)
target
Hard-core bosons (range-1)
Hard-core bosons w. controlled hopping
Stoquastic 2-local Hamiltonians

Perturbative reductions

energy
TIM on degree-3 graphs
General TIM
Hard-core dimers
Hard-core bosons (range-2) simulator
Hard-core bosons (range-1)
target
Hard-core bosons w. controlled hopping
Stoquastic 2-local Hamiltonians

Perturbative reductions

energy
TIM on degree-3 graphs
General TIM
Hard-core dimers
Hard-core bosons (range-2)
Hard-core bosons (range-1)
Hard-core bosons w. controlled hopping
simulator
Stoquastic 2-local Hamiltonians target

Hard-core dimers model (HCD)

- System of k particles on a fixed graph with n nodes.
- Each site can be either empty or occupied by a particle
- Admissible configurations are nearest-neighbor pairs - dimers
- Dimers must be separated by a fixed distance r - the range

Hard-core dimers model (HCD)

- System of k particles on a fixed graph with n nodes.
- Each site can be either empty or occupied by a particle
- Admissible configurations are nearest-neighbor pairs - dimers
- Dimers must be separated by a fixed distance r - the range

Dimers can only move locally:

Dimers can only move locally:

Forbidden hopping:
$W_{3,6}$
range-2 HCD

$$
H=-t \sum_{\substack{u, v \\ \text { long-range } \\ \text { hopping }}} W_{u, v}+\sum_{\substack{u \\ \text { on-site chemical } \\ \text { potential }}} \mu_{u} N_{u}+\sum_{\substack{u, v \\ \text { two-particle } \\ \text { interaction }}} J_{u, v} N_{u} N_{v}
$$

Dimers cannot come too close to each other:

How the reductions work: overview energy

TIM on degree-3 graphs
General TIM
Hard-core dimers (range-3)
Hard-core bosons (range-2)
Hard-core bosons (range-1)
Hard-core bosons w. controlled hopping
Stoquastic 2-local Hamiltonians

General TIM

TIM on degree-3 graphs

Encode each spin into the ground subspace of 1D TIM.

Now each spin is coupled to at most 3 other spins.

Hard-core dimers (range-3)
General TIM

General TIM

Ising Hamiltonian whose ground states are range-3 dimers:

$$
\begin{gathered}
H_{0}=\sum_{u} N_{u}-2 \sum_{D(u, v)=1} N_{u} N_{v}+\Gamma \sum_{D(u, v)=2} N_{u} N_{v} \\
N_{u}=\left(I+Z_{u}\right) / 2 \quad \Gamma=\operatorname{poly}(n) \\
D(u, v)-\text { graph distance between sites } u, v
\end{gathered}
$$

General TIM

Open problems:

Universality of TIM for quantum annealing with k-local stoquastic Hamiltonians for $k>2$

Is there a subclass of BQP that captures the power of quantum annealing with stoquastic Hamiltonians?

More efficient algorithms for the ferromagnetic TIM. Can one compute the ground state energy directly without computing the partition function?

Amplification of the completeness and soundness errors for the class StoqMA

